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Abstract. We have introduced a new technique for constant-pressure molecular dynamics by combining
the idea behind the Parrinello-Rahman scheme and the method by Iannuzzi, Laio and Parrinello [Phys.
Rev. Lett. 90, 238302 (2003)], recently devised to deal with rare events. The new scheme is suitably devised
to describe solid-solid phase transitions for which the primary order parameter is not the cell shape, but
some internal structural coordinate. The method has been demonstrated by simulating the conversion of
graphite into diamond at high pressure within a tight-binding model.

PACS. 61.50.Ks Crystallographic aspects of phase transformations; pressure effects

1 Introduction

The study of phase transitions under pressure is a very
active area of research [1]. The experimental investigation
of matter at extreme conditions of pressure and tempera-
ture is often very demanding and can benefit from the aid
of theoretical simulations suitable to provide possible can-
didates for the structures stable at high pressure and tem-
perature. In this respect, the predictive power of molecular
dynamics simulations has been greatly improved with the
introduction of the constant-pressure Parrinello-Rahman
(PR) technique [2] and its implementation in the ab-initio
Car-Parrinello method [3]. However, in PR simulations a
first-order phase transition does not proceed via nucle-
ation and growth as expected in the real system, instead it
often takes place as a collective transformation occurring
across the whole simulation cell. As a consequence the sys-
tem has to cross a significant free energy barrier to trans-
form from one structure to another and the activation bar-
rier must often be reduced by overpressurization in order
to observe the transition within the accessible simulation
time. Under these conditions intermediate phases may be
skipped which reduces the predictive power of the method.
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An important step to overcome these limitations has been
put forward by Martoňák, Laio and Parrinello (MLP) [4]
who developed a new method to study pressure-induced
structural transformation by adapting an approach previ-
ously devised by Laio and Parrinello [5] to observe rare
events within molecular dynamics simulations. As in the
PR scheme, MLP used the edges of the simulation cell
h = (�a, �b, �c) as dynamical variables. However, in place of
the second order equation of motion of the PR scheme,
in the MLP method the cell edges evolve according to a
first-order steepest-descent-like dynamics (metadynamics)
under the effect of the imbalance between the internal
stress and the external applied pressure and of an ex-
ternal history-dependent potential which drives the sys-
tem away from the local minimum towards a new crys-
tal structure. The history-dependent potential is given by
the sum of Gaussian functions centered at every point
already visited by the cell edges along the metadynam-
ics trajectory and acts as to discourage the system from
visiting them again. This Gaussian potential, which fills
the free energy basins in the configuration space spanned
by the cell edges, can also be introduced in a contin-
uous dynamics which would amount to simply add the
Gaussian history-dependent potential of reference [4] to
the Parrinello-Rahman Lagrangian. The advantages of the
MPL method have been demonstrated by reproducing the
phase transition of silicon at the theoretical transition
pressure whereas the PR dynamics requires a pressure
three times as large.
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However, the MPL scheme still suffers from some lim-
itations in common with the original PR method. For in-
stance the MPL is less effective for the study of phase
transitions for which the primary order parameter is an
internal coordinate instead of the cell edges. This is the
case for phase transformations under pressure described in
terms of solid state chemical reactions such as the 2D [6]
and 3D [7] polymerizations of C60 or the topochemical
solid-state polymerizations of alkenes, alkynes and aro-
matic hydrocarbons [8,9]. For instance, in the 2D poly-
merization of C60 the activation barrier for the [2+2] cy-
cloaddition reaction is overcome by a suitable deformation
of the fullerenic cage which is not induced by simply de-
creasing the intercage distances down to the density of
the 2D polymer [10]. In the perspective to address the
study of phase transformations in this class of materials,
we here present an extension to constant-pressure simula-
tions of the scheme recently devised by Iannuzzi, Laio and
Parrinello (ILP) [11] to deal with the molecular dynamics
simulation of complex chemical reactions with large acti-
vation barriers. The ILP scheme can be dubbed reactive
molecular dynamics since suitably defined reaction coordi-
nates are introduced as dynamical variables. By combining
the ideas behind the PR and ILP methods we introduce
a constant-pressure reactive molecular dynamics scheme
and demonstrate its validity by simulating the conversion
of carbon from graphite to diamond under pressure. This
latter transformation as well can be seen as driven by an
internal order parameter: the corrugation of the graphitic
planes leading to the change of hybridization of carbon
from sp2 to sp3. Graphite thus represents a simpler sys-
tem to show the capabilities of the new scheme and its
advantages with respect to the PR method. The graphite
to diamond conversion has been already reproduced in
the ab-initio PR molecular dynamics simulations of ref-
erence [12] although at a pressure (90 GPa) four times
larger than the experimental estimate (15 GPa, [13]) due
to the aforementioned limitations of the PR method. In
the present work graphite is described by the tight-binding
(TB) potential of reference [14] supplemented by an em-
pirical two-body van der Waals (vdW) interaction, nec-
essary to describe the interplanar distance in graphite.
Within the new simulation scheme graphite transforms
to diamond at the theoretical transition density at room
temperature whereas within a PR simulation no transfor-
mation is observed for this model (TB) of graphite even if
temperature is increased up to 1000 K and pressure up to
four times the theoretical transition pressure. The method
is described in Section 2 and its application to graphite is
presented in Section 3 below.

2 Methodology

2.1 General scheme

By combining the ideas behind the PR and ILP meth-
ods we introduce a constant-pressure reactive molecular

dynamics described by a Lagrangian of the form

L =
1
2
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ih
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1
2
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)2
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where the first line is the PR Lagrangian [2] and the second
line is the ILP Lagrangian [11]. si are scaled ionic coor-
dinates, Ω is the cell volume, p the external pressure and
ηα are collective variables as in the ILP scheme [11] with
a fictitious kinetic energy and mass (Mα). A harmonic
potential restrains the values of the collective coordinates
ηα({si},h) close to the corresponding dynamical collec-
tive variables ηα. The values of Mα and kα are chosen
in such a way as to separate adiabatically the motion of
the collective variables from the ionic one as discussed in
reference [11]. The collective coordinates ηα({si},h) are
functions of the scaled ionic coordinates and of the cell
edges and should be able to discriminate between the ini-
tial and final phases. E({si},h) is the total internal energy
while V ({ηα}, t) is the history-dependent potential acting
on the collective variables and given by
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W
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α |2
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α , (2)

where W and σα are suitable chosen parameters as de-
scribed in reference [5]. The equations of motion corre-
sponding to the Lagrangian (1) are
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is the internal stress including a contribution from the
harmonic restrain potential in (1).

2.2 Computational details for the simulation
of graphite

To demonstrate the validity of the new scheme described
above we have simulated the conversion of carbon from
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graphite to diamond under pressure. This transformation
can be seen as driven by an internal order parameter such
as the corrugation of the graphitic planes which leads to
the change of hybridization of carbon from sp2 to sp3. As a
measure of the hybridization type of the carbon atoms, we
have defined as collective variable the coordination num-
ber of the atoms of a single graphitic plane in the simula-
tion cell with respect to the atoms of the two neighboring
planes, i.e.

η =
∑

i∈plane

∑
j /∈plane

cij , (5)

with

cij =
1 − ( rij

d )6

1 − ( rij

d )12
, (6)

where rij is the distance between atoms i and j and
d = 2.2 Å. The energy term E({si},h) in equation (1)
is given by the tight-binding potential of reference [14]
supplemented by an empirical two-body van der Waals
interaction, necessary to describe the interplanar distance
in graphite. Details on the van der Waals interatomic po-
tential are given in the Appendix. Calculations are per-
formed with a supercell containing 128 atoms initially
arranged in the graphite structure with four graphitic
planes per cell in the ABAB (hexagonal) stacking [12].
Only the supercell Γ point has been included in the Bril-
louin Zone integration. The calculated equation of state
(EOS) of graphite at zero temperature has been fitted by
a Murnaghan function [15] close to the equilibrium vol-
ume (inset of Fig. 1a) which corresponds to the equilib-
rium lattice parameters a = 2.46 Å (exp. 2.46 Å [16])
and c = 6.82 Å (exp. 6.70 Å [16]) and bulk modulus
B = 28 GPa (exp. 35.8 GPa [17]) in good agreement with
the experimental values. The c/a ratio in graphite as a
function of volume is reported in Figure 1b; the change
in slope is associated to a change in the stacking of the
graphitic plane from the hexagonal (ABAB) stacking at
low pressure to the orthorombic stacking at high pressure
(cf. Ref. [12]). The equilibrium lattice parameter and bulk
modulus of diamond calculated with a commensurate 128-
atoms supercell are a = 3.552 Å (exp. 3.566 Å [16]) and
B = 473 GPa (exp. 442 GPa [18]) [19]. The calculated
EOS of graphite and diamond are reported in Figure 1a.
The compressibility of graphite is well reproduced close
to the equilibrium volume, but it is drastically overesti-
mated at lower volumes. As a consequence the theoreti-
cal transition pressure to diamond is as high as 129 GPa
(exp. 15 GPa [13]) and the volume jump at the transition
pressure is very small, the volume being 4.70 Å3/atom
for graphite and 4.60 Å3/atom for diamond (cf. the ab-
initio EOS of graphite and diamond of Ref. [12]). These
results highlight the inadequacy of the TB+vdW model to
describe correctly graphite at high pressure. Nevertheless
this model graphite represents a good testing case for the
new simulation scheme. In fact, the small volume jump at
the theoretical transition pressure prevents the reduction
of the activation barrier by overpressurization and conse-
quently the transition to diamond does not take place in a
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Fig. 1. (a) Equation of state of state of graphite (G, dots) and
diamond (D, continuous line) obtained with the tight-binding
model (see text). Inset: equation of state of graphite close to
the equilibrium volume. (b) Ratio c/a in graphite as a function
of volume. (c) Volume versus pressure in a Parrinello-Rahman
simulation of graphite at 1000 K (see text).

PR simulation (70 ps long) even by increasing the pressure
up to 700 GPa and temperature up to 1000 K. The pres-
sure versus volume curve in the PR simulation is reported
in Figure 1c. Conversely, we will show in Section 3 that
within the new simulation scheme, the transformation to
diamond occurs very close to the theoretical transition
density. In the simulations reported in the next section,
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Fig. 2. Free evolution in time of the collective coordinate
η({si}, h) (continuous line, Eq. (5)) and of the corresponding
dynamical collective variable η (dashed line) in a constant-
pressure simulation of graphite at 15 GPa and 300 K. The
history-dependent Gaussian potential is not added.

the fictitious mass and spring constant of the collective
variable (Eq. (5)) are M = 0.24 amu Å2 and k = 0.04 eV.
The evolution in time of the dynamical collective variable
η and of the corresponding collective coordinate η({si},h)
is shown in Figure 2 for a free (without Gaussian poten-
tial, Eq. (2)) constant-pressure simulation at 15 GPa and
300 K. The ionic temperature is controlled by velocity
rescaling with a tolerance of 10% on the target tempera-
ture. As is clear from Figure 2, the values chosen for M and
k ensure a good restrain of the collective coordinate to the
corresponding dynamical variable. The height and width
of the Gaussian functions of the history-dependent poten-
tial of equation (2) are W = 3 eV and σ = 10.0 according
to the general prescriptions given in references [5,11]. A
Gaussian is added whenever η changes by 15 units or after
80 fs of simulation. We have also repeated the simulations
at higher temperature (1000 K) and with different param-
eters of the Gaussian functions (W = 7 eV and σ = 15.0,
and W = 4 eV and σ = 10.0) with results similar to those
reported in next section. In all simulations the fictitious
mass of the cell is WC = 128 amu [20] and the integra-
tion time step is 0.51 fs. A predictor-corrector integrator
of order five is used.

3 Results

We have performed a constant-pressure simulation of
graphite according to equation (3) at 15 GPa and 300 K.
The Gaussian potential acting on the collective variable of
equation (5) is added as described in Section 2. The sim-
ulation cell is initially equilibrated at 15 GPa and 300 K
within standard PR dynamics. The evolution in time of
the edges, angles and volume of the simulation cell and of
the collective coordinate η({si},h) is shown in Figure 3.
During the simulation run, 28 ps long, we have observed
several (of the order of 15) forward and backward transi-
tions between graphite and diamond. Since there is a small
volume jump at the transition point, the transformation
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Fig. 3. Evolution in time of the (a) cell edges, (b) cell angles
and (c) cell volume in a constant-pressure simulation at 15 GPa
and 300 K within the new simulation scheme. The cell edges
a and b lye on the graphitic planes while c is initially parallel
to the [0001] direction of graphite. (d) Evolution in time of the
collective coordinate η({si},h) (see text).
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Fig. 4. Evolution in time of the indicator χ (see Eq. (7) in the
text) which discriminates between the structures of graphite
and diamond. Only the first part of the simulation is reported
for sake of clarity. The inset reports a magnification of the time
interval around 14 ps where the second transition to diamond
occurs. Along the whole run 28 ps long, we have seen 15 jumps
of χ similar to those reported in the figure which equally cor-
respond to oscillations between graphite and diamond.

in not easily recognizable by inspection on the evolution
of the cell parameters. The collective coordinate of equa-
tion 5 as well, although suitable to induce the transforma-
tion, it is not able to clearly discriminate between the two
phases at very high pressure. We has thus introduced the
indicator χ which provides a sharper distinction between
the hybridization states of carbon atoms as

χ =
1
N

∑
i

1
ni

∑
j>k

nijnik cos3 θijk (7)

where

ni =
∑
j �=i

nij ,

nij =
1

1 + e(rij−d)/∆
, (8)

with d = 1.8 Å and ∆ = 0.05 Å. The index i runs over
all the N atoms of the simulation cell and ni is the co-
ordination number of atom ith. The index k and j run
over atoms neighboring to atom ith and θijk is the an-
gle subtended by the tern ijk whose contribution to χ is
weighted by the product of the partial coordination num-
ber nik and nij . The cosine function in (7) is able to dis-
criminate between the hybridization sp2 and sp3. In fact
the indicator χ is –0.125 for graphite and –0.06 for di-
amond at 15 GPa and 300 K. The time evolution of χ
is reported in Figure 4 only for the first part of the run
for sake of clarity. Two transitions from graphite to di-
amond are clearly identified at 10.5 ps and at 14.0 ps.
Similarly, other twelve transformations can be identified

t = 14.008 ps

t = 13.936 ps

t = 13.870 ps

t = 13.870 ps

Fig. 5. The transformation path from graphite to diamond
occurring at 14.0 ps from selected snapshots of the atomic tra-
jectory (cf. Figs. 4 and 3). The simulation cell and the time
scale are also reported. The atoms depicted by dark spheres
correspond to the plane to which the collective variable of equa-
tion (5) refers to.

in the other 12 ps of simulation. As discussed in refer-
ence [5], the Gaussian potential fills first the free-energy
basin corresponding to graphite and, once the system is
driven to the new phase, the basin corresponding to the fi-
nal structure is then progressively filled. Once both basins
are filled, the system is able to oscillate from one struc-
ture to the other. The transformations at 10.5 and 14.0 ps
take place by a nucleation of the diamond structure on
the three planes involved in the definition of the collective
coordinate (Eq. (5)) and then propagates rapidly inducing
a change in the cell shape (a jump to lower values of the
c axis and of the α angle, cf. Figs. 4 and 3). The nucleus
survives longer in the transformation at 14.0 ps showing
up as a smaller peak in the rise of χ (inset of Fig. 4).
The transformation at 10.5 ps (14.0 ps) starts at a vol-
ume of 4.45 Å3/atom (4.70 Å3/atom) very close to the
theoretical transition volume of 4.70 Å3/atom obtained
from the EOS of graphite and diamond. The nucleus of
diamond forms by aligning in the ABC stacking the three
planes involved in the definition of the collective coor-
dinate (Eq. (5)). Then to complete the transformation,
the cell changes shape by aligning in the ABC stacking
the other planes as well which finally produces a diamond
structure with the [111] direction aligned to the original
[0001] axis of graphite (cf. Refs. [12]). A snapshot of the
atomic structure during the phase transition at 14.0 ps is
reported in Figure 5. This transformation path is different
from the mechanism identified in the ab-initio PR simula-
tion of reference [12] which involves the formation of an in-
termediate orthorombic phase, although the orthorombic
is the stable structure at high pressure also for our EOS of
graphite (cf. Figs. 1a and 1b). As in the ab-initio PR sim-
ulation of reference [12], we have observed a fast sliding of
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Fig. 6. The mixed phase of cubic and hexagonal diamond in
one of the phase transition observed. The edges of the unit cells
are also shown.

the graphitic planes which assume many different stacking
geometries including the orthorombic phase. The discrep-
ancy with the ab-initio result on the transformation path
might be either due to the formation of a nucleus in the
present simulation as opposed to the collective transfor-
mation of reference [12], or it might most probably origi-
nate from the inadequacy of the TB model in describing
the interplanar interaction in graphite at high pressure.
In fact, the underestimation of the interplanar repulsion
would also imply a smaller energy difference between the
hexagonal and orthorombic phases. Nevertheless, the is-
sue here is that the new technique has been demonstrated
to correctly reproduce the structure of the phase stable
at high pressure by providing a spontaneous transforma-
tion at the theoretical equilibrium volume whereas the
PR method fails [23]. Moreover, in agreement with the
ab-initio PR simulation of reference [12], some of the struc-
tures observed during the oscillations from graphite to di-
amond are a mixture of cubic and hexagonal diamond
(see Fig. 6). These results demonstrate the effectiveness
of the constant-pressure scheme presented in Section 2.
However, for the particular application presented here, we
must say that the MPL scheme as well is able to repro-
duce the phase transition at the theoretical equilibrium
density. In fact, a transition from graphite to diamond at
the volume of 4.84 Å3 has also been observed in a PR sim-
ulation supplemented by the history-dependent Gaussian
potential acting on the length of the c-axis only. Never-
theless, the results presented for graphite would encourage
the application of our new scheme to other systems where
its advantages with respect to the PR and MLP methods
would show up more clearly. This would be the case of the
3D polymerization of C60 for which both the PR and MLP
methods have already been demonstrated to fail in repro-
ducing the phase transition from the 2D polymer to the
ordered 3D polymeric structure observed experimentally.

4 Conclusion

In summary, we have introduced a new method for the
simulation of solid-solid phase transitions by constant-
pressure molecular dynamics. By combining the idea be-
hind the Parrinello-Rahman scheme and the method by
Iannuzzi, Laio and Parrinello [11] dealing with rare events,
we have devised a new technique suitable to describe
solid-solid phase transitions for which the primary or-
der parameter is not the cell shape, but some internal
structural coordinate. The applicability of the method
has been demonstrated by simulating the conversion of
graphite into diamond at high pressure within a tight-
binding model. The transition occurs spontaneously at
the theoretical transition density whereas it does not take
place in a Parrinello-Rahman simulation (within the tight-
binding model) even by overpressurizing the system up to
five times the theoretical transition pressure.

This work is partially supported by MURST through project
PRIN01-2001021133. We gratefully thank M. Iannuzzi, A. Laio
and M. Parrinello for discussion and for sharing with us their
insight on the new methods they have developed.

Appendix

We have supplemented the TB model of reference [14] with
a two-body potential which includes the van der Waals
(vdW) interaction, necessary to reproduce the interplanar
distance of graphite. We have used the same vdW poten-
tial we previously used to simulate C60 fullerite in ref-
erence [21]. The additional two-body interaction is given
by a Lennard-Jones potential VLJ = 4ε((σ/r)12 − (σ/r)6)
with ε = 2.84385 meV and σ = 3.469 Å [22]. This poten-
tial is active only at interatomic distances larger than the
cutoff of the TB potential of reference [14] (rcut = 2.6 Å)
as VvdW = Vo for r < rcut, VvdW = Vo + a(r − rcut)2 +
b(r − rcut)3 for rcut < r < rcut + δ1 and VvdW = VLJ for
r > rcut + δ1. The parameters a, b and Vo are obtained
by imposing the continuity of the function and its first
derivative at the two boundaries rcut and rcut + δ1. The
free parameter δ1 has been fitted in reference [21] in or-
der to reproduce the lattice parameter of fullerite. This
potential is sufficiently transferable to reproduce the in-
terplanar distance and compressibility of graphite at the
equilibrium volume as described in Section 2.
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